Search results for "Spectral Methods."

showing 9 items of 9 documents

Unsteady Separation and Navier-Stokes Solutions at High Reynolds Numbers

2010

We compute the numerical solutions for Navier-Stokes and Prandtl’s equations in the case of a uniform bidimensional flow past an impulsively started disk. The numerical approx- imation is based on a spectral methods imple- mented in a Grid environment. We investigate the relationship between the phenomena of unsteady separation of the flow and the exponential decay of the Fourier spectrum of the solutions. We show that Prandtl’s solution develops a separation singularity in a finite time. Navier-Stokes solutions are computed over a range of Reynolds numbers from 3000 to 50000. We show that the appearance of large gradients of the pressure in the stream- wise direction, reveals that the visc…

Boundary Layer TheoryNavier-Stokes SolutionUnsteady SeparationComplex SingularitieSpectral Methods.Settore MAT/07 - Fisica Matematica
researchProduct

Computational approach to compact Riemann surfaces

2017

International audience; A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on…

[ MATH ] Mathematics [math]Fundamental groupEquations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Holomorphic functionGeneral Physics and AstronomyFOS: Physical sciences010103 numerical & computational mathematics01 natural sciencessymbols.namesakeMathematics - Algebraic Geometrynumerical methodsFOS: MathematicsSpectral Methods0101 mathematics[MATH]Mathematics [math]Algebraic Geometry (math.AG)Mathematical PhysicsMathematicsCurvesKadomtsev-Petviashvili equationCollocationNonlinear Sciences - Exactly Solvable and Integrable SystemsPlane (geometry)Applied MathematicsRiemann surface010102 general mathematicsMathematical analysisStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Methods of contour integrationHyperelliptic Theta-FunctionsRiemann surfacessymbolsDispersion Limit[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Algebraic curveExactly Solvable and Integrable Systems (nlin.SI)Complex plane
researchProduct

Scattering resonances and Pseudospectrum : stability and completeness aspects in optical and gravitational systems

2022

The general context of this thesis is an effort to establish a bridge between gravitational andoptical physics, specifically in the context of scattering problems using as a guideline concepts andtools taken from the theory of non-self-adjoint operators. Our focus is on Quasi-Normal Modes(QNMs), namely the natural resonant modes of open leaky structures under linear perturbationssubject to outgoing boundary conditions. They also are referred to as scattering resonances.In the conservative self-adjoint case the spectral theorem guarantees the completeness andspectral stability of the associated normal modes. In this sense, a natural question in the non-self-adjoint setting refers to the char…

QNM completenessPseudospectrumBlack holesNanoparticulesMethodes spectralesSpectrum stabilityOperateurs non-selfadjointsSpectral methodsQuasinormal modesPseudospectreNon-Selfadjoint operatorNanoparticlesModes quasi-NormauxComplétude de modes quasi-NormauxTrous noirStabilité spectrale[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
researchProduct

Singularity formation and separation phenomena in boundary layer theory

2009

In this paper we review some results concerning the behaviour of the incompressible Navier–Stokes solutions in the zero viscosity limit. Most of the emphasis is put on the phenomena occurring in the boundary layer created when the no-slip condition is imposed. Numerical simulations are used to explore the limits of the theory. We also consider the case of 2D vortex layers, i.e. flows with internal layers in the form of a rapid variation, across a curve, of the tangential velocity.

Prandtl's equations Separation Spectral Methods Complex singularities Blow up time Regularizing viscosityBoundary layerClassical mechanicsSingularityDynamical systems theoryGeometric mechanicsDifferential equationComputational mechanicsFluid mechanicsSettore MAT/07 - Fisica MatematicaBoundary element methodMathematicsMathematical physics
researchProduct

Singularities for Prandtl's equations.

2006

We used a mixed spectral/finite-difference numerical method to investigate the possibility of a finite time blow-up of the solutions of Prandtl's equations for the case of the impulsively started cylinder. Our toll is the complex singularity tracking method. We show that a cubic root singularity seems to develop, in a time that can be made arbitrarily short, from a class of data uniformely bounded in H^1.

Prandtl’s equations Separation Spectral methods Complex singularities Blow–up time Regularizing viscosity.Settore MAT/07 - Fisica Matematica
researchProduct

Etude numérique d'équations aux dérivées partielles non linéaires et dispersives

2011

Numerical analysis becomes a powerful resource in the study of partial differential equations (PDEs), allowing to illustrate existing theorems and find conjectures. By using sophisticated methods, questions which seem inaccessible before, like rapid oscillations or blow-up of solutions can be addressed in an approached way. Rapid oscillations in solutions are observed in dispersive PDEs without dissipation where solutions of the corresponding PDEs without dispersion present shocks. To solve numerically these oscillations, the use of efficient methods without using artificial numerical dissipation is necessary, in particular in the study of PDEs in some dimensions, done in this work. As stud…

Davey-Stewartson systems[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]equations dispersivesdispersive shocksexponential time-differencing[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM][MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]spectral methodschocs dispersifsnumerical methodsdispersive equationsNo english keywordssplit stepschemas de decomposition d'operateursmethodes spectrales[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Kadomtsev-Petviashvili equationintegrating factor methodparallel computing[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Pas de mot clé en français[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]methodes numeriquesblow upequation de Kadomtsev-PetviashviliIntegrateurs exponentielssystemes de Davey-Stewartsoncalcul parallele
researchProduct

Multidomain spectral method for the Gauss hypergeometric function

2018

International audience; We present a multidomain spectral approach for Fuchsian ordinary differential equations in the particular case of the hypergeometric equation. Our hybrid approach uses Frobenius’ method and Moebius transformations in the vicinity of each of the singular points of the hypergeometric equation, which leads to a natural decomposition of the real axis into domains. In each domain, solutions to the hypergeometric equation are constructed via the well-conditioned ultraspherical spectral method. The solutions are matched at the domain boundaries to lead to a solution which is analytic on the whole compactified real line R∪∞, except for the singular points and cuts of the Rie…

Singular differential equationsMathematics::Classical Analysis and ODEsRiemann sphere[MATH] Mathematics [math]010103 numerical & computational mathematics01 natural sciencessymbols.namesakeFOS: MathematicsHypergeometric functionMathematics - Numerical Analysis[MATH]Mathematics [math]0101 mathematicsHypergeometric functionQAMathematicsLaplace's equationApplied MathematicsRiemann surfaceMathematical analysisNumerical Analysis (math.NA)[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA]Hypergeometric distribution010101 applied mathematicsSpectral methodsHarmonic functionOrdinary differential equationsymbolsSpectral method[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Numerical Algorithms
researchProduct

Mauro Picone, Sandro Faedo, and the numerical solution of partial differential equations in Italy (1928-1953)

2013

In this paper we revisit the pioneering work on the numerical analysis of partial differential equations (PDEs) by two Italian mathematicians, Mauro Picone (1885-1977) and Sandro Faedo (1913-2001). We argue that while the development of constructive methods for the solution of PDEs was central to Picone's vision of applied mathematics, his own work in this area had relatively little direct influence on the emerging field of modern numerical analysis. We contrast this with Picone's influence through his students and collaborators, in particular on the work of Faedo which, while not the result of immediate applied concerns, turned out to be of lasting importance for the numerical analysis of …

Partial differential equationNumerical analysisApplied MathematicsConstructiveSettore MAT/08 - Analisi NumericaIstituto per le Applicazioni del CalcoloHistory of numerical analysi Istituto per le Applicazioni del Calcolo Evolution problems Faedo–Galerkin method Spectral methodsHistory of numerical analysiCalculusApplied mathematicsEvolution problemFaedo-Galerkin methodAlgebra over a fieldSpectral methodSturm–Picone comparison theoremSpectral methodNumerical partial differential equationsMathematics
researchProduct

Multi-domain spectral approach with Sommerfeld condition for the Maxwell equations

2021

We present a multidomain spectral approach with an exterior compactified domain for the Maxwell equations for monochromatic fields. The Sommerfeld radiation condition is imposed exactly at infinity being a finite point on the numerical grid. As an example, axisymmetric situations in spherical and prolate spheroidal coordinates are discussed.

Physics and Astronomy (miscellaneous)Helmholtz equationRotational symmetryMaxwell equationsHelmholtz equationsSommerfeld conditionMulti domain spectral methodsSpheroidal coordinates010103 numerical & computational mathematicsSommerfeld radiation condition01 natural sciencesDomain (mathematical analysis)010305 fluids & plasmassymbols.namesake0103 physical sciencesFOS: Mathematics[INFO]Computer Science [cs]Mathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]Physics[PHYS]Physics [physics]Numerical AnalysisApplied MathematicsMathematical analysisNumerical Analysis (math.NA)Prolate spheroidal coordinatesComputer Science ApplicationsComputational MathematicsDipoleMaxwell's equationsModeling and SimulationsymbolsMonochromatic color
researchProduct